Kamis, 04 November 2010

Krakatau

Krakatau
Krakatoa (bahasa Inggris)

Gunung Krakatau pada lukisan abad ke-19.
Ketinggian 813 m (2,667 kaki)
Lokasi
Lokasi Selat Sunda, Indonesia Flag of Indonesia.svg
Koordinat 6°6′27″LS,105°25′3″BT
Geologi
Jenis Kaldera vulkanik
Letusan terakhir 2009
Krakatau adalah kepulauan vulkanik yang masih aktif dan berada di Selat Sunda antara pulau Jawa dan Sumatra. Nama ini pernah disematkan pada satu puncak gunung berapi di sana (Gunung Krakatau) yang sirna karena letusannya sendiri pada tanggal 26-27 Agustus 1883. Letusan itu sangat dahsyat; awan panas dan tsunami yang diakibatkannya menewaskan sekitar 36.000 jiwa. Sampai sebelum tanggal 26 Desember 2004, tsunami ini adalah yang terdahsyat di kawasan Samudera Hindia. Suara letusan itu terdengar sampai di Alice Springs, Australia dan Pulau Rodrigues dekat Afrika, 4.653 kilometer. Daya ledaknya diperkirakan mencapai 30.000 kali bom atom yang diledakkan di Hiroshima dan Nagasaki di akhir Perang Dunia II.
Letusan Krakatau menyebabkan perubahan iklim global. Dunia sempat gelap selama dua setengah hari akibat debu vulkanis yang menutupi atmosfer. Matahari bersinar redup sampai setahun berikutnya. Hamburan debu tampak di langit Norwegia hingga New York.
Ledakan Krakatau ini sebenarnya masih kalah dibandingkan dengan letusan Gunung Toba dan Gunung Tambora di Indonesia, Gunung Tanpo di Selandia Baru dan Gunung Katmal di Alaska. Namun gunung-gunung tersebut meletus jauh di masa populasi manusia masih sangat sedikit. Sementara ketika Gunung Krakatau meletus, populasi manusia sudah cukup padat, sains dan teknologi telah berkembang, telegraf sudah ditemukan, dan kabel bawah laut sudah dipasang. Dengan demikian dapat dikatakan bahwa saat itu teknologi informasi sedang tumbuh dan berkembang pesat.
Tercatat bahwa letusan Gunung Krakatau adalah bencana besar pertama di dunia setelah penemuan telegraf bawah laut. Kemajuan tersebut, sayangnya belum diimbangi dengan kemajuan di bidang geologi. Para ahli geologi saat itu bahkan belum mampu memberikan penjelasan mengenai letusan tersebut.

Perkembangan Gunung Krakatau

Gunung Krakatau Purba

Melihat kawasan Gunung Krakatau di Selat Sunda, para ahli memperkirakan bahwa pada masa purba terdapat gunung yang sangat besar di Selat Sunda yang akhirnya meletus dahsyat yang menyisakan sebuah kaldera (kawah besar) yang disebut Gunung Krakatau Purba, yang merupakan induk dari Gunung Krakatau yang meletus pada 1883. Gunung ini disusun dari bebatuan andesitik.
Catatan mengenai letusan Krakatau Purba yang diambil dari sebuah teks Jawa Kuno yang berjudul Pustaka Raja Parwa yang diperkirakan berasal dari tahun 416 Masehi. Isinya antara lain menyatakan:
Ada suara guntur yang menggelegar berasal dari Gunung Batuwara. Ada pula goncangan bumi yang menakutkan, kegelapan total, petir dan kilat. Kemudian datanglah badai angin dan hujan yang mengerikan dan seluruh badai menggelapkan seluruh dunia. Sebuah banjir besar datang dari Gunung Batuwara dan mengalir ke timur menuju Gunung Kamula.... Ketika air menenggelamkannya, pulau Jawa terpisah menjadi dua, menciptakan pulau Sumatera
Pakar geologi Berend George Escher dan beberapa ahli lainnya berpendapat bahwa kejadian alam yang diceritakan berasal dari Gunung Krakatau Purba, yang dalam teks tersebut disebut Gunung Batuwara. Menurut buku Pustaka Raja Parwa tersebut, tinggi Krakatau Purba ini mencapai 2.000 meter di atas permukaan laut, dan lingkaran pantainya mencapai 11 kilometer.
Akibat ledakan yang hebat itu, tiga perempat tubuh Krakatau Purba hancur menyisakan kaldera (kawah besar) di Selat Sunda. Sisi-sisi atau tepi kawahnya dikenal sebagai Pulau Rakata, Pulau Panjang dan Pulau Sertung, dalam catatan lain disebut sebagai Pulau Rakata, Pulau Rakata Kecil dan Pulau Sertung. Letusan gunung ini disinyalir bertanggung- jawab atas terjadinya abad kegelapan di muka bumi. Penyakit sampar bubonic terjadi karena temperatur mendingin. Sampar ini secara signifikan mengurangi jumlah penduduk di muka bumi.
Letusan ini juga dianggap turut andil atas berakhirnya masa kejayaan Persia purba, transmutasi Kerajaan Romawi ke Kerajaan Byzantium, berakhirnya peradaban Arabia Selatan, punahnya kota besar Maya, Tikal dan jatuhnya peradaban Nazca di Amerika Selatan yang penuh teka-teki. Ledakan Krakatau Purba diperkirakan berlangsung selama 10 hari dengan perkiraan kecepatan muntahan massa mencapai 1 juta ton per detik. Ledakan tersebut telah membentuk perisai atmosfer setebal 20-150 meter, menurunkan temperatur sebesar 5-10 derajat selama 10-20 tahun.

[sunting] Munculnya Gunung Krakatau

Perkembangan Gunung Krakatau
Pulau Rakata, yang merupakan satu dari tiga pulau sisa Gunung Krakatau Purba kemudian tumbuh sesuai dengan dorongan vulkanik dari dalam perut bumi yang dikenal sebagai Gunung Krakatau (atau Gunung Rakata) yang terbuat dari batuan basaltik. Kemudian, dua gunung api muncul dari tengah kawah, bernama Gunung Danan dan Gunung Perbuwatan yang kemudian menyatu dengan Gunung Rakata yang muncul terlebih dahulu. Persatuan ketiga gunung api inilah yang disebut Gunung Krakatau.
Gunung Krakatau pernah meletus pada tahun 1680 menghasilkan lava andesitik asam. Lalu pada tahun 1880, Gunung Perbuwatan aktif mengeluarkan lava meskipun tidak meletus. Setelah masa itu, tidak ada lagi aktivitas vulkanis di Krakatau hingga 20 Mei 1883. Pada hari itu, setelah 200 tahun tertidur, terjadi ledakan kecil pada Gunung Krakatau. Itulah tanda-tanda awal bakal terjadinya letusan dahsyat di Selat Sunda. Ledakan kecil ini kemudian disusul dengan letusan-letusan kecil yang puncaknya terjadi pada 26-27 Agustus 1883.

[sunting] Erupsi 1883

Sebuah litografi yang dibuat pada tahun 1888 yang menggambarkan Gunung Krakatau pada kejadian Erupsi 1883.
Pada hari Senin, 27 Agustus 1883, tepat jam 10.20, meledaklah gunung itu. Menurut Simon Winchester, ahli geologi lulusan Universitas Oxford Inggris yang juga penulis National Geographic mengatakan bahwa ledakan itu adalah yang paling besar, suara paling keras dan peristiwa vulkanik yang paling meluluhlantakkan dalam sejarah manusia modern. Suara letusannya terdengar sampai 4.600 km dari pusat letusan dan bahkan dapat didengar oleh 1/8 penduduk bumi saat itu.
Menurut para peneliti di University of North Dakota, ledakan Krakatau bersama ledakan Tambora (1815) mencatatkan nilai Volcanic Explosivity Index (VEI) terbesar dalam sejarah modern. The Guiness Book of Records mencatat ledakan Krakatau sebagai ledakan yang paling hebat yang terekam dalam sejarah.
Ledakan Krakatau telah melemparkan batu-batu apung dan abu vulkanik dengan volume 18 kilometer kubik. Semburan debu vulkanisnya mencavai 80 km. Benda-benda keras yang berhamburan ke udara itu jatuh di dataran pulau Jawa dan Sumatera bahkan sampai ke Sri Lanka, India, Pakistan, Australia dan Selandia Baru.
Letusan itu menghancurkan Gunung Danan, Gunung Perbuwatan serta sebagian Gunung Rakata dimana setengah kerucutnya hilang, membuat cekungan selebar 7 km dan sedalam 250 meter. Gelombang laut naik setinggi 40 meter menghancurkan desa-desa dan apa saja yang berada di pesisir pantai. Tsunami ini timbul bukan hanya karena letusan tetapi juga longsoran bawah laut.
Tercatat jumlah korban yang tewas mencapai 36.417 orang berasal dari 295 kampung kawasan pantai mulai dari Merak (Serang) hingga Cilamaya di Karawang, pantai barat Banten hingga Tanjung Layar di Pulau Panaitan (Ujung Kulon serta Sumatera Bagian selatan. Di Ujungkulon, air bah masuk sampai 15 km ke arah barat. Keesokan harinya sampai beberapa hari kemudian, penduduk Jakarta dan Lampung pedalaman tidak lagi melihat matahari. Gelombang Tsunami yang ditimbulkan bahkan merambat hingga ke pantai Hawaii, pantai barat Amerika Tengah dan Semenanjung Arab yang jauhnya 7 ribu kilometer.

[sunting] Anak Krakatau

Anak Krakatau, dua tahun sejak awal terbentuknya. Foto diambil 12 atau 13 Mei 1929, koleksi Tropenmuseum.
Mulai pada tahun 1927 atau kurang lebih 40 tahun setelah meletusnya Gunung Krakatau, muncul gunung api yang dikenal sebagai Anak Krakatau dari kawasan kaldera purba tersebut yang masih aktif dan tetap bertambah tingginya. Kecepatan pertumbuhan tingginya sekitar 20 inci per bulan. Setiap tahun ia menjadi lebih tinggi sekitar 20 kaki dan lebih lebar 40 kaki. Catatan lain menyebutkan penambahan tinggi sekitar 4 cm per tahun dan jika dihitung, maka dalam waktu 25 tahun penambahan tinggi anak Rakata mencapai 7.500 inci atau 500 kaki lebih tinggi dari 25 tahun sebelumnya. Penyebab tingginya gunung itu disebabkan oleh material yang keluar dari perut gunung baru itu. Saat ini ketinggian Anak Krakatau mencapai sekitar 230 meter di atas permukaan laut, sementara Gunung Krakatau sebelumnya memiliki tinggi 813 meter dari permukaan laut.
Menurut Simon Winchester, sekalipun apa yang terjadi dalam kehidupan Krakatau yang dulu sangat menakutkan, realita-realita geologi, seismik serta tektonik di Jawa dan Sumatera yang aneh akan memastikan bahwa apa yang dulu terjadi pada suatu ketika akan terjadi kembali. Tak ada yang tahu pasti kapan Anak Krakatau akan meletus. Beberapa ahli geologi memprediksi letusan ini akan terjadi antara 2015-2083. Namun pengaruh dari gempa di dasar Samudera Hindia pada 26 Desember 2004 juga tidak bisa diabaikan.
Anak Krakatau, Februari 2008
Menurut Profesor Ueda Nakayama salah seorang ahli gunung api berkebangsaan Jepang, Anak Krakatau masih relatif aman meski aktif dan sering ada letusan kecil, hanya ada saat-saat tertentu para turis dilarang mendekati kawasan ini karena bahaya lava pijar yang dimuntahkan gunung api ini. Para pakar lain menyatakan tidak ada teori yang masuk akal tentang Anak Krakatau yang akan kembali meletus. Kalaupun ada minimal 3 abad lagi atau sesudah 2325 M. Namun yang jelas, angka korban yang ditimbulkan lebih dahsyat dari letusan sebelumnya.

Jumat, 01 Oktober 2010

GERAKAN BUMI, BULAN , DAN MATAHARI


1. BUMI
Bentuk bumi kita seolah-olah datar. Dalam keadaan yang sebenarnya bumi itu bentuknya bulat . Hal-hal yang membuktikan bahwa bumi bulat antara lain :
1. Jika seseorang berlayar ke arah barat, maka orang itu akan kembali ke tempat semula dari arah yang berlawanan.
2. Pada saat terjadi gerhana bulan, bagian bulan yang tertutup bayangan bumi berupa lengkungan.
3. Jika kita berada di pelabuhan melihat kapal dari kejauhan yang tampak terlebih dahulu ujung dan akhirnya baru semua badan kapal.
4. Ketika menjelang matahari terbit atau terbenam, diufuk timur atau barat tampak kemerah-merahan.
5. Hasil pemotretan bumi.

Bumi melakukan 2 gerakan yaitu :
* Rotasi bumi
Rotasi bumi yaitu gerakan bumi berputar pada porosnya.
Rotasi bumi mengakibatkan peristiwa-peristiwa :
a) Terjadinya siang dan malam
b) Matahari terlihat terbit di timur dan tenggelam di barat.Terbit dan tenggelamnya matahari disebut gerak semu harian matahari.
c) Terjadinya perbedaan dan pembagian waktu. Kala rotasi bumi memerlukan waktu 24 jam. Satu kali rotasi semua tempat di permukaan bumi putarannya 360° bujur. Bumi kita dibagi menjadi 24 daerah waktu, sehingga setiap daerah waktu meliputi 15° bujur. Garis bujur 0° melewati kota Greenwich, sehingga waktu pangkal ditetapkan di Greenwich. Jika waktu standar di sebelah barat bujur 0° waktunya dikurangi sebaliknya di sebelah timur 0° waktunya ditambah.
* Revolusi bumi
Rovolusi bumi adalah peredaran bumi mengelilingi matahari.
Revolusi bumi mengakibatkan :
a) Gerak semu tahunan matahari
b) Perubahan lamanya siang dan malam
c) Pergantian musim sepanjang tahun
d) Terlihat rasi bintang yang berada dari bulan ke bulan
Gerak semu tahunan matahari berlangsung terus antara garis balik utara dan garis balik selatan. Perubahan lamanya siang dan malam. Revolusi bumi tidak dapat kita rasakan, tetapi adanya revolusi bumi ditunjukkan oleh terjadinya pergeseran lintasan mental sepanjang tahu .Revolusi bulan mengakibatkan terjadinya pergantian musim sepanjang tahun di daerah iklim. Musim yang terjadi di belahan bumi utara dan selatan selama 3 bulan.
Revolusi bumi juga mengakibatkan terlihatnya rasi bintang yang membedakan dari bulan ke bulan. Rasi bintang adalah kumpuan beberapa bintang yang membentuk planet tertentu misalnya rasi bintang scorpio, dan rasi gemini, jaman dahulu digunakan oleh para petani sebagai permulaan musim.Revolusi bumi digunakan dasar untuk dasar perhitungan kalender Masehi atau kalender syamsiah. Jumlah hari dalam satu tahun masehi 365 hari. Kala revolusi bumi 365,25 hari, sehingga sisanya 0,25 hari dikumpulkan menjadi 1 hari. Sehingga setiap 4 tahun jumlah hari dalam 1 tahun masehi 366 hari disebut tahun kabisat yang artinya tahun yang bisa dibagi 4.
2. BULAN
Bulan merupakan benda langit yang tidak memancarkan cahaya sendiri. Bentuk bulan sering terlihat berubah-ubah dari hari ke hari. Tapi sebenarnya bentuk bulan tidak berubah. Hal ini bisa demikian karena bulan dalam peredarannya melakukan 3 gerakan, yaitu :
* Bulan beredar berputar pada porosnya (berotasi)
Bulan berotasi membutuhkan waktu kira-kira 1 bulan, sama dengan waktu revolusinya maka wajah bulan yang tampak dari bumi selalu sama.
* Bulan mengelilingi bumi (berevolusi)
Dalam sekali bulan berevolusi, yang berarti pula berotasi, revolusi bulan mengakibatkan terjadinya fase-fase bulan. Kejadian fase-fase bulan adalah proses perubahan bentuk bulan yang terlihat dari bumi yaitu bulan baru, bulan mati, bulan sabit, bulan purnama. Waktu yang di perlukan oleh bulan dari bulan mati ke bulan baru adalah 29,5 hari.
* Bulan bersama-sama bumi mengelilingi matahari.
Selain beredar mengelilingi bumi, bulan juga melakukan gerakan bersama bumi mengelilingi matahari.Akibat gerakan ini bulan dan bumi kadang berada dalam satu garis lurus / sejajar. Peristiwa ini disebut juga dengan gerhana.

Gerakan bulan pada porosnya di gunakan untuk dasar kalender hijriah. Kalender hijriah sering disebut juga dengan kalender komariah. Jumlah hari dalam kalender hijriah 354 hari. Berarti dengan tahun masehi selisih 11 hari atau 12 hari.

Gerhana ada 2 macam yaitu :
* Gerhana bulan (Solar Eclips)
Gerhana bulan terjadi apabila bulan berada dalam daerah bayang-bayang bumi. Pada saat ini umbra bumi menutupi bulan. Kejadian ini terjadi jika matahari, bumi, dan bulan berada pada satu garis lurus, dan bumi terletak diantara matahari dan bumi.
* Gerhana matahari (Lunar Eclips)
Gerhana matahari terjadi jika diantara matahari dan bumiserta dalam satu garis lurus.
Gerhana matahari dibedakan menjadi 3 yaitu :
* Gerhana matahari total.
Gerhana ini terjadi bila permukaan bumi yang tertutup bayang-bayang inti bulan tidak terkena cahaya matahari.Peristiwa ini brlangsung sekitar 7 menit. Dalamseumur hidupnya mungkin seseorang hanya akan dapat akan mengalami gerhana ini kali.
* Gerhana matahari sebagian
Gerhana matahari sebagian terjadi jika hanya sebagian cahaya yang menuju bumi terhalang bulan.
* Gerhana matahari cicin
Gerhana ini terjadi pada saat bulan berada pada titik terjauh dari bumi.

Kamis, 16 September 2010

Variasi Matahari


Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Varasi Matahari selama 30 tahun terakhir
Variasi Matahari adalah perubahan jumlah energi radiasi yang dipancarkan oleh Matahari. Terdapat beberapa komponen periodik yang mempengaruhi variasi ini, yang terutama adalah siklus matahari 11-tahunan (atau siklus bintik hitam matahari), selain fluktuasi-fluktuasi lainnya yang tidak periodik. Aktivitas matahari diukur dengan menggunakan satelit selama beberapa dekade terakhir setelah pada waktu sebelumnya pengukuran dilakukan melalui variabel-variabel 'proksi'. Para ilmuan iklim tertarik untuk mengetahui apakah variasi matahari berpengaruh terhadap Bumi.
Variasi dalam total solar irradiance (TSI) sebelumnya tidak dapat diukur atau dideteksi hingga era penggunaan satelit, walaupun sebagian kecil panjang gelombang ultraviolet bervariasi beberapa persen. Output total matahari yang telah diukur (selama 3 kali periode siklus bintik hitam 11-tahunan) menunjukkan variasi sekitar 0,1%[1][2] atau sekitar 1,3 W/m2 dari maksimum ke minimum selama siklus bintik hitam 11-tahunan. Jumlah radiasi matahari yang diterima permukaan luar atmosfer Bumi sedikit bervariasi dari nilai rata-rata 1366 watt per meter persegi (W/m2).[3]
Fenomena variasi Matahari dikombinasikan dengan aktivitas gunung berapi mungkin telah memberikan beberapa efek perubahan iklim, sebagai contoh selama Maunder Minimum. Sebuah studi tahun 2006 dan review dari beberapa literatur, yang dipublikasikan dalam Nature, menyatakan bahwa tidak terdapat peningkatan tingkat "keterangan" dari Matahari sejak 1970, dan bahwa perubahan output matahari selama 400 tahun terakhir kecil kemungkinannya berperan dalam pemanasan global. Perlu ditekankan, laporan tersebut juga menyatakan "Selain tingkat "keterangan" matahari, hal-hal lain yang dapat mempengaruhi iklim seperti radiasi sinar kosmik atau sinar ultraviolet matahari tidak dapat dikesampingkan, kata penulis tersebut. Akan tetapi, pengaruh-pengaruh lain ini belum dapat dibuktikan, tambah mereka, karena model-model fisik untuk efek-efek ini masih belum sempurna dikembangkan.

Selasa, 31 Agustus 2010

GLETSER BIRU

Gletser adalah kumpulan  partikel dan sedimen dari air, glester merupakan kumpulan es yang sangat besar, yang bisa disebut gunung es. Glester berwarna biru, terbentuk ribuan tahun dari air yang dibekukan dan dipanaskan secara bersama. Glester merupakan air tawar yang paling murni dimuka bumi ini, yang kedua air asin.







Tapi sayang, sekarang gletser-gletser itu banyak yang mencair, pada hal untuk terbetuk kembali perlu ribuan tahun, semoga aja gletser-gletser itu tidak mencair lagi.

Jumat, 20 Agustus 2010

Sumber daya air

Sumber daya air adalah sumber daya berupa air yang berguna atau potensial bagi manusia. Kegunaan air meliputi penggunaan di bidang pertanian, industri, rumah tangga, rekreasi, dan aktivitas lingkungan. Sangat jelas terlihat bahwa seluruh manusia membutuhkan air tawar. 97% air di bumi adalah air asin, dan hanya 3% berupa air tawar yang lebih dari 2 per tiga bagiannya berada dalam bentuk es di glasier dan es kutub. Air tawar yang tidak membeku dapat ditemukan terutama di dalam tanah berupa air tanah, dan hanya sebagian kecil berada di atas permukaan tanah dan di udara.
Air tawar adalah sumber daya terbarukan, meski suplai air bersih terus berkurang. Permintaan air telah melebihi suplai di beberapa bagian di dunia dan populasi dunia terus meningkat yang mengakibatkan peningkatan permintaan terhadap air bersih. Perhatian terhadap kepentingan global dalam mempertahankan air untuk pelayanan ekosistem telah bermunculan, terutama sejak dunia telah kehilangan lebih dari setengah lahan basah bersama dengan nilai pelayanan ekosistemnya. Ekosistem air tawar yang tinggi biodiversitasnya saat ini terus berkurang lebih cepat dibandingkan dengan ekosistem laut ataupun darat.

Sumber air tawar

Air permukaan

Air permukaan adalah air yang terdapat di sungai, danau, atau rawa air tawar. Air permukaan secara alami dapat tergantikan dengan presipitasi dan secara alami menghilang akibat aliran menuju lautan, penguapan, dan penyerapan menuju ke bawah permukaan.
Meski satu-satunya sumber alami bagi perairan permukaan hanya presipitasi dalam area tangkapan air, total kuantitas air dalam sistem dalam suatu waktu bergantung pada banyak faktor. Faktor-faktor tersebut termasuk kapasitas danau, rawa, dan reservoir buatan, permeabilitas tanah di bawah reservoir, karakteristik aliran pada area tangkapan air, ketepatan waktu presipitasi dan rata-rata evaporasi setempat. Semua faktor tersebut juga mempengaruhi besarnya air yang menghilang dari aliran permukaan.
Aktivitas manusia memiliki dampak yang besar dan terkadang menghancurkan faktor-faktor tersebut. Manusia seringkali meningkatkan kapasitas reservoir total dengan melakukan pembangunan reservoir buatan, dan menguranginya dengan mengeringkan lahan basah. Manusia juga sering meningkakan kuantitas dan kecepatan aliran permukaan dengan pembuatan sauran-saluran untuk berbagai keperluan, misalnya irigasi.
Kuantitas total dari air yang tersedia pada suatu waktu adalah hal yang penting. Sebagian manusia membutuhkan air pada saat-saat tertentu saja. Misalnya petani membutuhkan banyak air ketika akan menanam padi dan membutuhkan lebih sedikit air ketika menanam palawija. Untuk mensuplai petani dengan air, sistem air permukaan membutuhkan kapasitas penyimpanan yang besar untuk mengumpulkan air sepanjang tahun dan melepaskannya pada suatu waktu tertentu. Sedangkan penggunaan air lainnya membutuhkan air sepanjang waktu, misalnya pembangkit listrik yang membutuhkan air untuk pendinginan, atau pembangkit listrik tenaga air. Untuk mensuplainya, sistem perairan permukaan harus terisi ketika aliran arus rata-rata lebih rendah dari kebutuhan pembangkit listrik.
Perairan permukaan alami dapat ditambahkan dengan mengambil air permukaan dari area tangkapan hujan lainnya dengan kanal atau sistem perpipaan. Dapat juga ditambahkan secara buatan dengan cara lainnya, namun biasanya jumlahnya diabaikan karena terlalu kecil.
Manusia dapat menyebabkan hilangnya sumber air permukaan dengan menjadikannya tidak lagi berguna, misalnya dengan cara polusi.
Brazil adalah negara yang diperkirakan memiliki suplai air tawar terbesar di dunia, diikuti oleh Rusia, Kanada, dan Indonesia.

Aliran sungai bawah tanah

Total volum air yang dialirkan dari daratan menuju lautan dapat berupa kombinasi aliran air yang dapat terlihat dan aliran yang cukup besar di bawah permukaan melalui bebatuan dan lapisan bawah tanah yang disebut dengan zona hiporeik (hyporheic zone). Untuk beberapa sungai di lembah-lembah yang besar, komponen aliran yang "tidak terlihat" mungkin cukup besar dan melebihi aliran permukaan. Zona hiporeik seringkali membentuk hubungan dinamis antara perairan permukaan dengan perairan subpermukaan dengan saling memberi ketika salah satu bagian kekurangan air. Hal ini terutama terjadi di area karst di mana lubang tempat terbentuknya hubungan antara sungai bawah tanah dan sungai permukaan cukup banyak.

 Air tanah

Air tanah adalah air tawar yang terletak di ruang pori-pori antara tanah dan bebatuan dalam. Air tanah juga berarti air yang mengalir di lapisan aquifer di bawah water table. Terkadang berguna untuk membuat perbedaan antara perairan di bawah permukaan yang berhubungan erat dengan perairan permukaan dan perairan bawah tanah dalam di aquifer (yang terkadang disebut dengan "air fosil").
Sistem perairan di bawah permukaan dapat disamakan dengan sistem perairan permukaan dalam hal adanya input, output, dan penyimpanan. Perbedaan yang paling mendasar adalah kecepatan dan kapasitasnya; air tanah mengalir dengan kecepatan bervariasi, antara beberapa hari hingga ribuan tahun untuk muncul kembali ke perairan permukaan dari wilayah tangkapan hujan, dan air tanah memiliki kapasitas penyimpanan yang jauh lebih besar dari perairan permukaan.
Input alami dari air tanah adalah serapan dari perairan permukaan, terutama wilayah tangkapan air hujan. Sedangkan output alaminya adalah mata air dan serapan menuju lautan.
Air tanah mengalami ancaman berarti menghadapi penggunaan berlebihan, misalnya untuk mengairi lahan pertanian. Penggunaan secara belebihan di area pantai dapat menyebabkan mengalirnya air laut menuju sistem air tanah, menyebabkan air tanah dan tanah di atasnya menjadi asin (intrusi air laut. Selain itu, manusia juga dapat menyebabkan air tanah terpolusi, sama halnya dengan air permukaan yang menyebabkan air tanah tidak dapat digunakan.

Desalinasi

Desalinasi adalah proses buatan untuk mengubah air asin (umumnya air laut) menjadi air tawar. Proses desalinasi yang paling umum adalah destilasi dan osmosis terbalik. Desalinasi saat ini cukup mahal jika dibandingkan dengan mengambil langsung dari sumber air tawar, hanya sebagian kecil kebutuhan manusia terpenuhi melalui desalinasi. Proses ini terjadi secara ekstensif di Teluk Persia untuk mensuplai air bagi beberapa wilayah di Timur Tengah dan fasilitas wisata dan perhotelan di wilayah tersebut.

Air beku

Bongkahan es yang terlihat di New Foundland, Canada
Es yang membeku di kutub dan glasier berpotensi untuk dijadikan sumber air tawar karena dua per tiga air tawar dunia berada dalam bentuk es. Beberapa skema telah diajukan untuk menjadikan gunung es di kutub sebagai sumber air, namun hingga saat ini hal itu hanya sekedar rencana. Aliran glasier saat ini dikatakan sebagai salah satu perairan permukaan.
Himalaya, "Atap Dunia" mengandung glasier dan es dalam jumlah besar di luar wilayah kutub, dan menjadi sumber dari sepuluh sungai besar di Asia yang menghidupi miliaran manusia. Masalah yang terjadi saat ini adalah peningkatan temperatur dunia yang cukup cepat, Nepal saat ini mengalami peningkatan rata-rata sebesar 0,6 derajat Celcius sejak sepuluh tahun lalu, sementara dunia mengalami peningkatan sebesar 0,7 sejak ratusan tahun yang lalu.

Penggunaan air tawar

Penggunaan air tawar dapat dikategorikan sebagai penggunaan konsumtif dan non-konsumtif. Air dikatakan digunakan secara konsumtif jika air tidak dengan segera tersedia lagi untuk penggunaan lainnya, misalnya irigasi (di mana penguapan dan penyerapan ke dalam tanah serta penyerapan oleh tanaman dan hewan ternak terjadi dalam jumlah yang cukup besar). Jika air yang digunakan tidak mengalami kehilangan serta dapat dikembalikan ke dalam sistem perairan permukaan (setelah diolah jika air berbentuk limbah), maka air dikatakan digunakan secara non-konsumtif dan dapat digunakan kembali untuk keperluan lainnya, baik secara langsung maupun tidak langsung.

Pertanian

Diperkirakan 69% penggunaan air di seluruh dunia untuk irigasi. Di beberapa wilayah irigasi dilakukan terhadap semua tanaman pertanian, sedangkan di wilayah lainnya irigasi hanya dilakukan untuk tanaman pertanian yang menguntungkan, atau untuk meningkatkan hasil. Berbagai metode irigasi melibatkan perhitungan antara hasil pertanian, konsumsi air, biaya produksi, penggunaan peralatan dan bangunan. Metode irigasi seperti irigasi beralur (furrow) dan sprinkler umumnya tidak terlalu mahal namun kurang efisien karena banyak air yang mengalami evaporasi, mengalir atau terserap ke area di bawah atau di luar wilayah akar. Metode irigasi lainnya seperti irigasi tetes, irigasi banjir, dan irigasi sistem sprinkler di mana sprinkler dioperasikan dekat dengan tanah, dikatakan lebih efisien dan meminimalisasikan aliran air dan penguapan meski lebih mahal. Setiap sistem yang tidak diatur dengan benar dapat menyia-nyiakan sumber daya air, sedangkan setiap metode memiliki potensi untuk efisiensi yang lebih tinggi pada kondisi tertentu di bawah pengaturan waktu dan manajemen yang tepat.
Saat populasi dunia meningkat, dan permintaan terhadap bahan pangan juga meningkat dengan suplai air yang tetap, terdapat dorongan untuk mempelajari bagaimana memproduksi bahan pangan dengan sedikit air, melalui peningkatan metode dan teknologi irigasi, manajemen air pertanian, tipe tanaman pertanian, dan pemantauan air.

Industri

Diperkirakan bahwa 15% air di seluruh dunia dipergunakan untuk industri. Banyak pengguna industri yang menggunakan air, termasuk pembangkit listrik yang menggunakan air untuk pendingin atau sumber energi, pemurnian bahan tambang dan minyak bumi yang menggunakan air untuk proses kimia, hingga industri manufaktur yang menggunakan air sebagai pelarut. Porsi penggunaan air untuk industri bervariasi di setiap negara, namun selalu lebih rendah dibandingkan penggunaan untuk pertanian.
Air juga digunakan untuk membangkitkan energi. Pembangkit listrik tenaga air mendapatkan listrik dari air yang menggerakkan turbin air yang dihubungkan dengan generator. Pembangkit listrik tenaga air adalah pembangkit listrik yang rendah biaya produksi, tidak menghasilkan polusi, dan dapat diperbarui. Energi ini pada dasarnya disuplai oleh matahari; matahari menguapkan air di permukaan, yang lalu mengalami pengembunan di udara, turun sebagai hujan, dan air hujan mensuplai air bagi sungai yang mengaliri pembangkit listrik tenaga air. Bendungan Three Gorges merupakan bendungan pembangkit listrik tenaga air terbesar di dunia.
Penggunaan industrial lainnya adalah turbin uap dan penukar panas, juga sebagai pelarut bahan kimia. Keluarnya air dari industri tanpa dilakukan pengolahan terlbih dahulu dapat disebut sebagai polusi. Polusi meliputi pelepasan larutan kimia (polusi kimia) atau pelepasan air sisa penukaran panas (polusi termal). Industri membutuhkan air murni untuk berbagai aplikasi dan menggunakan berbagai tehnik pemurnian untuk Rumah tangga
Air minum yang umum berada di negara-negara maju
Diperkirakan 15% penggunaan air di seluruh dunia adalah di rumah tangga. Hal ini meliputi air minum, mandi, memasak, sanitasi, dan berkebun. Kebutuhan minimum air yang dibutuhkan dalam rumah tangga menurut Peter Gleick adalah sekitar 50 liter per individu per hari, belum termasuk kebutuhan berkebun. Air minum haruslah air yang berkualitas tinggi sehingga dapat langsung dikonsumsi tanpa risiko bahaya. Di sebagian besar negara-negara berkembang, air yang disuplai untuk rumah tangga dan industri adalah air minum standar meski dalam proporsi yang sangat kecil digunakan untuk dikonsumsi langsung atau pengolahan makanan.

 Rekreasi

Penggunaan air untuk rekreasi biasanya sangatlah kecil, namun terus berkembang. Air yang digunakan untuk rekreasi biasanya berupa air yang ditampung dalam bentuk reservoir, dan jika air yang ditampung melebihi jumlah yang biasa ditampung dalam reservoir tersebut, maka kelebihannya dikatakan digunakan untuk kebutuhan rekreasional. Pelepasan sejumlah air dari reservoir untuk kebutuhan arung jeram atau kegiatan sejenis juga disebut sebagai kebutuhan rekreasional. Hal lainnya misalnya air yang ditampung dalam reservoir buatan (misalnya kolam renang).
Penggunaan rekreasional umumnya non-konsumtif, karena air yang dilepaskan dapat digunakan kembali. Pengecualian terdapat pada penggunaan air di lapangan golf, yang umumnya sering menggunakan air dalam jumlah berlebihan terutama di daerah kering. Namun masih belum jelas apakah penggunaan ini dikategorikan sebagai penggunaan rekreasional atau irigasi, namun tetap memberikan efek yang cukup besar bagi sumber daya air setempat.
Sebagai tambahan, penggunaan rekreasional mungkin akan mengurangi ketersediaan air bagi kebutuhan lainnya di suatu tempat pada suatu waktu tertentu.

Lingkungan dan ekologi

Penggunaan bagi lingkungan dan ekologi secara eksplisit juga sangat kecil namun terus berkembang. Penggunaan air untuk lingkungan dan ekologi meliputi lahan basah buatan, danau buatan yang ditujukan untuk habitat alam liar, konservasi satwa ikan, dan pelepasan air dari reservoir untuk membantu ikan bertelur.
Seperti penggunaan untuk rekreasi, penggunaan untuk lingkungan dan ekologi juga termasuk penggunaan non konsumtif, namun juga mengurangi ketersediaan air untuk kebutuhan lainnya di suatu tempat pada suatu waktu tertentu.

 Stres air

Konsep stres air dan krisis air sesungguhnya sangatlah sederhana. Menurut World Business Council for Sustainable Development, hal ini adalah situasi di mana tidak cukup air untuk semua kebutuhan, baik itu untuk pertanian, industri, atau yang lainnya. Mendefinisikan masalah ini dalam bentuk per kapita lebih rumit, namun mendatangkan asumsi yang lebih baik untuk penggunaan air dan penghematannya. Namun telah diperkirakan bahwa ketika ketersediaan air yang dapat diperbarui di bawah 1.700 meter kubik per kapita per tahun, maka negara tersebut akan mengalami stres air secara periodik, di bawah 1.000 maka kelangkaan air akan terjadi dan merintangi pertumbuhan ekonomi dan kesehatan manusia.

Peningkatan populasi

Di tahun 2000, dunia berpopulasi 6,2 miliar. PBB memperkirakan bahwa di tahun 2050, dunia akan mendapatkan tambahan penduduk sekitar 3,5 miliar dengan pertumbuhan terbesar ada di negara-negara berkembang yang telah mengalami stres air. Hal itu akan menyebabkan peningkatan permintaan air kecuali negara melakukan konservasi air dan mendaur ulang sumber daya yang vital ini.

Peningkatan kesejahteraan

Tingkat kesejahteraan terus meningkat terutama di negara dengan dua populasi terbanyak di dunia, yaitu Cina dan India. Namun, peningkatan kesejahteraan ini berarti juga peningkatan penggunaan air: air bersih untuk kebutuhan dasar dan sanitasi, berkebun dan membersihkan kendaraan, kolam renang pribadi, dan sebagainya.

Ekspansi bisnis

Aktivitas bisnis berkisar dari industri hingga jasa seperti pariwisata dan hiburan terus berkembang dengan cepat. Ekspansi ini membutuhkan peningkatan pelayanan terhadap kebutuhan air seperti suplai dan sanitasi, yang memicu tekanan terhadap sumber daya air dan ekosistem alam.

Urbanisasi

 Perubahan iklim

Perubahan iklim dapat memberikan efek yang signifikan terhadap sumber daya air di seluruh dunia karena hubungan yang erat antara iklim dan daur hidrologi. Peningkatan temperatur akan meningkatkan penguapan dan memicu peningkatan presipitasi. Secara keseluruhan akan terjadi peningkatan suplai air tawar dunia. Banjir dan kekeringan akan terjadi lebih sering di beberapa wilayah dalam waktu yang berbeda-beda, akan terjadi perubahan yang drastis pada hujan salju dan proses pelelehan salju di pegunungan akan meningkat. Temperatur yang meningkat juga akan mempengaruhi kualitas air, namun belum dipahami dengan baik. Dampak yang paling mungkin adalah eutrofikasi, yaitu peningkatan populasi tumbuhan air (alga, eceng gondok, dll) secara cepat. Perubahan iklim juga akan meningkatkan permintaan suplai air untuk irigasi, dan mungkin air untuk kolam renang.

Hilangnya aquifer

Akibat dari meningkatnya populasi manusia, kompetisi untuk mendapatkan air meningkat sehingga banyak aquifer di seluruh dunia menjadi habis. Hal ini terjadi akibat konsumsi langsung manusia seperti irigasi pertanian menggunakan air tanah. Jutaan pompa di seluruh dunia dalam berbagai ukuran saat ini sedang mengambil air tanah. Irigasi di wilayah kering seperti di utara Cina dan India disuplai oleh air tanah, dan diambil dalam jumlah yang tidak semestinya. Kota-kota besar juga telah mengalami kehilangan lapisan aquifer dan mengakibatkan lapisan tanahnya turun antara 10 hingga 50 meter seperti yang terjadi di Mexico City, Bangkok, Manila, Beijing, Madras, Jakarta dan Shanghai.

Polusi dan proteksi air

Polusi air adalah satu dari sekian kekhawatiran utama dunia saat ini. Pemerintahan di berbagai negara telah berusaha mencari solusi untuk mengurangi masalah ini. Banyak polutan mengancam suplai air, dan di banyak tempat terutama di negara yang belum berkembang, hal ini disebabkan pembuangan limbah secara langsung ke perairan alam. Metode ini umum terjadi di negara yang belum berkembang, namun juga banyak terjadi di negara yang sedang berkembang seperti Cina, India, dan Iran.
Sampah, limbah, dan bahkan polutan beracun dibuang ke perairan. Meski limbah tersebut diolah terlebih dahulu, masalah tetap ada. Sisa olahan limbah berbentuk lumpur mungkin akan ditempatkan di lahan pembuangan sampah, dibakar di insinerator, atau dibuang ke laut. Sumber polutan lainnya seperti air sisa irigasi yang mengandung berbagai macam pupuk kimia dan bahan organik tanaman pertanian juga mengancam ekosistem perairan, bersama dengan aliran air hujan di perkotaan dan limbah kimia yang dibuang oleh industri.

[sunting] Konflik perebutan air

Satu-satunya konflik yang tercatat terjadi akibat perebutan air terjadi di tahun 2500 SM antara wilayah Lagash dan Umma di Sumeria. Ketika kelangkaan air menyebabkan ketegangan politik, hal ini dapat dikatakan sebagai stres air. Stres air telah memicu konflik lokal dan regional.
Stres air juga dapat menyebabkan konflik dan ketegangan politik meski penyebabnya bukan secara langsung disebabkan oleh air. Reduksi secara bertahap terhadap kualitas dan kuantitas air tawar dapat menambah ketidakstabilan suatu wilayah dengan berkurangnya kesehatan suatu populasi, menghalangi pertumbuhan ekonomi, dan dapat menyebabkan konfik yang lebih besar.
Konflik dan ketegangan terhadap air seringkali terjadi di perbatasan antar negara. Di beberapa area seperti wilayah dataran rendah Sungai Kuning di Cina atau Sungai Chao Phraya di Thailand telah mengalami stres air dalam beberapa tahun. Dan di beberapa wilayah arid yang bergantung sepenuhnya pada air untuk irigasi seperti Cina bagian barat, India, Iran, dan Pakistan, memiliki resiko konflik akibat air. Ketegangan politik, protes warga sipil, dan kekerasan juga akan terjadi terhadap reaksi privatisasi air. Perang Air Bolivia tahun 2000 adalah salah satu contohnya.

Suplai dan distribusi air dunia

Pangan dan air adalah dua kebutuhan dasar manusia. Namun kondisi global pada tahun 2002 mengindikasikan bahwa dari sepuluh orang, lima diantaranya memiliki akses ke suplai air berpipa di rumah, tiga orang memiliki tipe suplai air lainnya seperti mata air terlindung atau pipa air publik, dua orang tidak sama sekali. Dan sebagai tambahan, empat dari sepuluh orang tersebut hidup tanpa sanitasi yang berarti.
Dalam Earth Summit 2002, para pemerintahan dari berbagai negara menyetujui Plan of Action untuk:
  • Mengurangi hingga setengah dari jumlah rakyat yang tidak mampu mendapatkan air minum yang aman di tahun 2015. Global Water Supply and Sanitation Assessment 2000 Report (GWSSAR) mendefinisikan bahwa setiap orang harus mendapatkan akses sebesar 20 liter per harinya dari sumber sejauh maksimal satu kilometer dari tempat tinggalnya.
  • Mengurangi hingga setengahnya jumlah rakyat yang tidak memiliki akses ke sanitasi dasar. GWSSAR mendefinisikan sanitasi dasar sebagai sistem pembuangan pribadi atau berbagi namun bukan milik umum yang memisahkan limbah dari kontak dengan manusia.
Di tahun 2025, kelangkaan air akan lebih terlihat di negara miskin di mana sumber daya terbatas dan perkembangan populasi meningkat, seperti di Afrika, Timur Tengah, dan beberapa bagian di Asia. Di tahun 2025, area urbanisasi yang besar akan membutuhkan banyak infrastruktur baru untuk menyediakan air yang aman dan sanitasi yang pantas. Hal ini diperkirakan akan menimbulkan konflik dengan pengguna air di pertanian, yang saat ini menggunakan sebagian besar air yang digunakan oleh seluruh manusia.
1,6 miliar orang telah mendapatkan akses sumber air yang aman sejak tahun 1990. Proporsi masyarakat di negara-negara berkembang dengan akses air yang aman dikalkulasikan meningkat dari 30 persen hingga 71 persen di tahun 1990, 79 persen di tahun 2000, dan 84 persen di tahun 2004. Kecenderungan ini diperkirakan akan berlanjut.

dari wkipedia bahasa indonesia

Senin, 16 Agustus 2010

black hole (Lubang hitam)


Dari Wikipedia bahasa Indonesia, ensiklopedia bebas





.
Lubang hitam adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar. Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga 8kecepatan lepas di dekatnya mendekati kecepatan cahaya. Tak ada sesuatu, termasuk radiasi elektromagnetik yang dapat lolos dari gravitasinya, bahkan cahaya hanya dapat masuk tetapi tidak dapat keluar atau melewatinya, dari sini diperoleh kata "hitam". Istilah "lubang hitam" telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali. Secara teoritis, lubang hitam dapat memliki ukuran apa pun, dari mikroskopik sampai ke ukuran alam raya yang dapat diamati.

Landasan Teori

Teori adanya lubang hitam pertama kali diajukan pada abad ke-18 oleh John Michell and Pierre-Simon Laplace, selanjutnya dikembangkan oleh astronom Jerman bernama Karl Schwarzschild, pada tahun 1916, dengan berdasar pada teori relativitas umum dari Albert Einstein, dan semakin dipopulerkan oleh Stephen William Hawking. Pada saat ini banyak astronom yang percaya bahwa hampir semua galaksi dialam semesta ini mengelilingi lubang hitam pada pusat galaksi.
Adalah John Archibald Wheeler pada tahun 1967 yang memberikan nama "Lubang Hitam" sehingga menjadi populer di dunia bahkan juga menjadi topik favorit para penulis fiksi ilmiah. Kita tidak dapat melihat lubang hitam akan tetapi kita bisa mendeteksi materi yang tertarik / tersedot ke arahnya. Dengan cara inilah, para astronom mempelajari dan mengidentifikasikan banyak lubang hitam di angkasa lewat observasi yang sangat hati-hati sehingga diperkirakan di angkasa dihiasi oleh jutaan lubang hitam.

  • Asal Mula Lubang Hitam
Lubang Hitam tercipta ketika suatu obyek tidak dapat bertahan dari kekuatan tekanan gaya gravitasinya sendiri. Banyak obyek (termasuk matahari dan bumi) tidak akan pernah menjadi lubang hitam. Tekanan gravitasi pada matahari dan bumi tidak mencukupi untuk melampaui kekuatan atom dan nuklir dalam dirinya yang sifatnya melawan tekanan gravitasi. Tetapi sebaliknya untuk obyek yang bermassa sangat besar, tekanan gravitasi-lah yang menang.
  • Pertumbuhannya
Massa dari lubang hitam terus bertambah dengan cara menangkap semua materi didekatnya. Semua materi tidak bisa lari dari jeratan lubang hitam jika melintas terlalu dekat. Jadi obyek yang tidak bisa menjaga jarak yang aman dari lubang hitam akan terhisap. Berlainan dengan reputasi yang disandangnya saat ini yang menyatakan bahwa lubang hitam dapat menghisap apa saja disekitarnya, lubang hitam tidak dapat menghisap material yang jaraknya sangat jauh dari dirinya. dia hanya bisa menarik materi yang lewat sangat dekat dengannya. Contoh : bayangkan matahari kita menjadi lubang hitam dengan massa yang sama. Kegelapan akan menyelimuti bumi dikarenakan tidak ada pancaran cahaya dari lubang hitam, tetapi bumi akan tetap mengelilingi lubang hitam itu dengan jarak dan kecepatan yang sama dengan saat ini dan tidak terhisap masuk kedalamnya. Bahaya akan mengancam hanya jika bumi kita berjarak 10 mil dari lubang hitam, dimana hal ini masih jauh dari kenyataan bahwa bumi berjarak 93 juta mil dari matahari. Lubang hitam juga dapat bertambah massanya dengan cara bertubrukan dengan lubang hitam yang lain sehingga menjadi satu lubang hitam yang lebih besar.